Pointwise Convergence of Lacunary Spherical Means
نویسندگان
چکیده
We show that if f is locally in L log logL then the lacunary spherical means converge almost everywhere. The argument given here is a model case for more general results on singular maximal functions and Hilbert transforms along plane curves [6].
منابع مشابه
Korovkin Type Theorem for Functions of Two Variables via Lacunary Equistatistical Convergence
Aktuğlu and Gezer [1] introduced the concepts of lacunary equistatistical convergence, lacunary statistical pointwise convergence and lacunary statistical uniform convergence for sequences of functions. Recently, Kaya and Gönül [11] proved some analogs of the Korovkin approximation theorem via lacunary equistatistical convergence by using test functions 1, x 1+x , y 1+y , ( x 1+x )2+( y 1+y )2....
متن کاملOn $I$-statistical and $I$-lacunary statistical convergence of order $alpha$
In this paper, following a very recent and new approach, we further generalize recently introduced summability methods, namely, $I$-statistical convergence and $I$-lacunary statistical convergence (which extend the important summability methods, statistical convergence and lacunary statistical convergence using ideals of $mathbb{N}$) and introduce the notions of $I$-statis...
متن کاملStability and convergence theorems of pointwise asymptotically nonexpansive random operator in Banach space
In this paper, we prove the existence of a random fixed point of by using pointwise asymptotically nonexpansive random operator and the stability resultsof two iterative schemes for random operator.
متن کاملPOINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کاملOn Generalized Difference Lacunary Statistical Convergence
A lacunary sequence is an increasing integer sequence θ = (kr) such that k0 =0, kr−kr−1 →∞ as r →∞. A sequence x is called Sθ(∆)− convergent to L provided that for each ε > 0, limr(kr − kr−1) {the number of kr−1 < k ≤ kr : |∆xk−L| ≥ ε} = 0, where ∆xk = ∆xk− ∆xk+1. The purpose of this paper is to introduce the concept of ∆ − lacunary statistical convergence and ∆-lacunary strongly convergence an...
متن کامل